METABOLIC EFFECTS OF AQUATIC ACTIVITY

Bruce E. Becker, MD, MS, FACSM
Former Director, National Aquatics & Sports Medicine Institute
Washington State University
Clinical Professor
University of Washington
beckerb@wsu.edu
www.aquaticdoc.com
Aquatic Immersion Effects on the Human Body

Central Nervous System
Increases autonomic balance
May increase brain blood flow
Produces relaxation

Respiratory
Increases work of breathing
Allowing strengthening of respiratory musculature

Cardiovascular
Increases stroke volume and cardiac output
Reduces circulatory resistance
Reduces blood pressure

Musculoskeletal
Increases muscle blood flow
Offloads bones and joints
Reduces pain

Renal
Increases renal blood flow
Improves renal function
Facilitates sodium excretion
CARDIAC CHANGES DURING IMMERSION

Cardiac output increases

Water Immersion to chest or higher

Increased hydrostatic pressure

Venous compression

Lymphatic compression

Central blood volume increases

Atrial pressure rises

Pulmonary Arterial Pressure rises

Cardiac volume increases

Stroke volume increases

Cardiac output increases
VASCULAR PRESSURES DURING IMMERSION

Effects of Swim Training on Blood Pressure (mmHg)

12 weeks of swim training 3-4 days/wk vs. Attention Controls

<table>
<thead>
<tr>
<th></th>
<th>Pre-Training</th>
<th>Post-Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swim Systolic</td>
<td>128</td>
<td>119</td>
</tr>
<tr>
<td>Control Systolic</td>
<td>132</td>
<td>129</td>
</tr>
<tr>
<td>Swim Diastolic</td>
<td>95</td>
<td>89</td>
</tr>
<tr>
<td>Control Diastolic</td>
<td>98</td>
<td>95</td>
</tr>
</tbody>
</table>

* p<0.05

Source: Nualnim et al, Effects of Swimming Training on Blood Pressure and Vascular Function in Adults >50 Years of Age, Am. J of Cardiol, 109(7), 2012, 1005-1010
AQUATIC TREADMILL EXERCISE AND EXERCISING BLOOD PRESSURE

Mean Arterial Pressure (mmHg)

- ATM pre
- ATM post
- LTM pre
- LTM post

* p<0.05 ATM pre/post
○ p<0.05 LTM to ATM

Lambert et al., Aquatic Treadmill Training Reduces Blood Pressure Reactivity to Physical Stress, MSSE 46:4, 809-816
ARTERIAL COMPLIANCE COMPARISONS

mm²/mmHg

*p<0.05
EFFECTS OF SWIM TRAINING ON CAROTID ARTERY COMPLIANCE

12 weeks of swim training 3-4 days/wk vs. Attention Controls

- Pre-Training
- Post-Training

* p<0.05

Source: Nualnim et al, Effects of Swimming Training on Blood Pressure and Vascular Function in Adults >50 Years of Age, Am. J of Cardiol, 109(7), 2012, 1005-1010
ENDOTHELIAL FUNCTION CHANGE

12 Weeks of Treadmill training 3/wk

- Unexercised, Untrained
- Exercised, Untrained
- Exercised, Trained

* p<0.05

Source: Lambert et al, Aquatic Treadmill Training Reduces Blood Pressure Reactivity to Physical Stress, MSSE 46:4, 2014, 809-816
LIPID METABOLISM BASICS

• Exercise promotes lipid mobilization and free fatty acid release from adipose tissue and other fat deposits

• Fat oxidation rates increase from low to moderate exercise, but can decrease beyond that (exercise intensity determines magnitude of lipolysis)

• Exercise oxidizes mobilized fat in muscle tissue

• This process is impaired in many obese individuals, esp. in Type 2 DM

• The main hormonal regulators of lipid mobilization are insulin, catecholamines and ANP

• ANP stimulates lipolysis from human adipocytes as well as oxidizing lipids from serum postprandially

• Immersion increases ANP release through atrial stretch receptors

• Immersion reduces resting catecholamine levels
RENAL HORMONE CHANGES DURING IMMERSION

Changes in %

Epstein, Murray; Renal effects of head out immersion in humans: a 15-year update; Physiological Reviews. 1992
Catacholamine Changes During Immersion

- Norepinephrine
- Epinephrine
- Dopamine

Percentage Changes from Baseline:
- 0%
- 30%
- 90%
- 120%
- 150%

Time Points:
- Prestudy
- 1 hr
- 2 hr
- 3 hr.
- 4 hr.
- 1 Hour Post
METABOLIC HORMONE CHANGES DURING AQUATIC EXERCISE

17 male subjects, avg. age 31, comparing randomized, cross-over incremental cycling exercise on land and immersed @ H2O temp 28°, incremental cycling to exhaustion.

Changes in %

Baseline Anaerobic Threshold Peak Exercise

0% 35% 70% 105% 140%

ANP Epinephrine Norepinephrine

ANP RELEASE AND FAT OXIDATION FOLLOWING AQUATIC VS LAND AEROBIC EXERCISE IN OVERWEIGHT PERSONS

Randomized cross-over study of 14 overweight adults (6♂, 8♀), BMI >26-31, exercised at AT for 1 hr on a cycle on land or water, with blood draws pre/post for ANP, FFA, insulin, glucose and catecholamines.

Aquatic Exercise Effects on Glucose & Insulin in Overweight Women

12 week prospective observational study of 15 women BMI > 33.7 with normal glucose tolerance, 8 impaired GT, 60 min aquarunning and resistance sessions 3x/wk, at 70-75% HR_{max}

- Normal Glucose tolerance
- Impaired Glucose Tolerance

<table>
<thead>
<tr>
<th>% Change from Baseline</th>
<th>Normal Glucose tolerance</th>
<th>Impaired Glucose Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>94%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>85%</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>94%</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>77%</td>
<td>56%</td>
<td></td>
</tr>
</tbody>
</table>

* = p < 0.01 within group
** = p < 0.05 between groups

AQUATIC EXERCISE EFFECTS ON MEN WITH TYPE 2 DIABETES

12 wk prospective observational study of 18 men with Type II DM, 50 min aquatic sessions 3x/wk at 50-75% VO$_{2\text{max}}$ assessing blood, echocardiography and QOL

AQUATIC EXERCISE EFFECTS ON MEN WITH TYPE 2 DIABETES

12 wk prospective observational study of 18 men with Type II DM, 50 min aquatic sessions 3x/wk at 50-75% VO$_{2\text{max}}$ assessing blood, echocardiography and QOL

AQUATIC EXERCISE EFFECTS ON MEN WITH TYPE 2 DIABETES

12 wk prospective observational study of 18 men with Type II DM, 50 min aquatic sessions 3x/wk at 50-75% VO2\text{max} assessing blood, echocardiography and QOL

RENAL FUNCTION DURING IMMERSION

Epstein, Physiol Rev 72:577, 1992
AQUATIC EXERCISE EFFECTS ON CHRONIC KIDNEY DISEASE

Vertical aquatic exercise 30 min/session twice weekly for 12 weeks in moderate CRF pts.

- **Peak VO2**: EX post 101%, Control post 102%
- **Peak load**: EX post 97%, Control post 95%
- **S-Crea**: EX post 116%, Control post 115%
- **GFR**: EX post 95%, Control post 107%
- **U-Prot**: EX post 57%, Control post 107%
- **LPO**: EX post 66%, Control post 136%

Aquatic Forces & Physiology

The Physics of H2O

Cardiac Physiology

Pulmonary Physiology

Renal Physiology

Neurophysiology

MSK Physiology

\[\Delta P = \rho g \Delta h \]
\[Q = mc \Delta T \]
\[Re = 2 \bar{v} r \rho / \eta \]
\[P_d = kv^3 \]
A Little Nervous System Anatomy

• The nervous system is comprised of 3 major components:

1. The Central Nervous System
 • The brain
 • The spinal cord

2. The Peripheral Nervous System
 • All of the major and minor nerves

3. The Autonomic Nervous System
 • The Sympathetic Nervous System
 • The Parasympathetic Nervous System

• The motherboard for most physiologic functions
The Cocoon Effect
PROBABLE CAUSES

• Autonomic Nervous System downregulation
 • Heart Rate Variability changes
 • Catacholamine changes
 • Blood Pressure changes
 • EEG changes
 • Muscle tone changes
THE AUTONOMIC SYSTEM

• Is the master control panel for homeostasis and responses to biologic threats

• Regulates essentially all major body functions
 • Cardiac and vascular systems
 • Respiratory
 • Digestive
 • Endocrine

• Functions mainly subconsciously
SYMPATHETIC SYSTEM FUNCTIONS

- Up-regulates the body for action
 - Increases heart rate and forcefulness
 - Constricts blood vessels in gut, but not in muscle, brain and heart
 - Increases blood pressure
 - Dilates pulmonary bronchioles
 - Slows gastric activity
 - Dilates pupils
 - Tightens sphincters
- Earliest neural regulatory system to emerge
- Chronic SNS activity increases inflammatory cytokines and catecholamines, decreases anti-inflammatory processes
THE PARASYMPATHETIC SYSTEM

- Sometimes called the “rest & digest” or “feed and breed” component

- Slow response system functioning in opposition to the sympathetic system

- Nerve fibers flow from the sacral and cranial nerves (craniosacral outflow)

- Controls salivation, lacrimation, urination, defecation and sexual arousal, but also some brain functions

- Increases anti-inflammatory cytokines, suppresses pro-inflammatory processes
Autonomic imbalance has been suggested to be the final common pathway in many diseases.

Highly correlated with cardiovascular health.

Associated with diabetes, inflammatory processes, and immune dysfunction.

An increase in parasympathetic tone decreases release of inflammatory cytokines, & increased sympathetic tone increases them.
Core Temperature

![Graph showing core temperature changes with time and temperature categories: Cool (31.1°C), Neutral (36.7°C), Warm (38.9°C). The graph compares College-Age (solid line) and Age 42 to 65 (dashed line).](image)

Heart Rate Change

BLOOD PRESSURE RESPONSES BY GROUP

Young vs Older Circulatory Changes

SYMPATHOVAGAL BALANCE

Immersion Minutes

<table>
<thead>
<tr>
<th>Immersion Minutes</th>
<th>Sympathovagal Balance PSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Neutral</td>
</tr>
<tr>
<td>6</td>
<td>Cool 31.1°C</td>
</tr>
<tr>
<td>12</td>
<td>Warm 38.9°C</td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
</tr>
</tbody>
</table>

ANS Study Findings

• Systolic pressures remained quite constant through all 3 immersion phases, with age group differences

• Diastolic pressures declined through the 3 phases, also with age-group differences

• Heart rates remained stable until climbing during the mid-point of warm water immersion

• Core temperatures also rose during this latter cycle, but only by less than 1°C on average
• There seems to be a very significant effect of warm water immersion upon the autonomic nervous system

• That effect seems to enhance the balance between parasympathetic and sympathetic components, and is likely one of the major changes that create the feeling of relaxation in warm water.

• The increase in autonomic balance did not happen in cooler water temperatures

• Sympathetic activation occurred in both cool and neutral temperatures, but not in warm

• The changes noted were quite consistent across all of the subjects

Warm water immersion produces a balancing of the 2 components of the autonomic nervous system.

This autonomic effect has been associated with:

- Reduction in cardiac irritability
- Reduction in blood pressure, both systolic & diastolic
- A decrease in inflammatory processes
- Anxiety reduction & mental relaxation
- Improvement in mood state & reduction in mood state disorders
- Improvement in working memory
- Increase in cognitive task-performance, creative problem-solving & cognitive flexibility
POTENTIAL CLINICAL APPLICATIONS WITH ANS DYSFUNCTION

- Cardiac Rehabilitation
- Diabetes, both Types I & II
- Mood State Disorders
 - Depression
 - Anxiety and panic disorders
- Attention Deficit Disorder
- Autism
- Fibromyalgia
Aquatic Exercise Effects on Pro- & Anti-Inflammatory Monocytic Cytokine Production in Fibromyalgia

Nonrandomized study of 2x/wk 60 min. aquatic exercise sessions in 9 women with ACR-criteria fibromyalgia, compared to 9 age-matched healthy sedentary female controls, with blood draws pre-, 4 months and 8 mo.

AQUATIC THERAPY AND SCI SPASTICITY

20 SCI patients, age, gender, Ashworth, baclofen and FIM matched. Control group received standard therapy and treated group received additional 20 min of aquatic therapy 3x/wk for 10 weeks.

Aquatic Forces & Physiology

\[\Delta P = \rho g \Delta h \]
\[Q = mc \Delta T \]
\[Re = \frac{2\nu \rho}{\eta} \]
\[P_d = kv^3 \]

The Physics of H2O
Cardiac Physiology
Pulmonary Physiology

Renal Physiology
Neurophysiology
MSK Physiology
Muscle Blood Flow during Immersion

Tib. Ant. blood flow, Xe washout, thermoneutral

Muscle Blood Flow

Dry land
1.8

Immersed
4.1

Blood Flow in ml / min / 100 gm. tissue

AQUATICS & BONE DENSITY

- In older male Masters swimmers, increased bone density has been found.
- In older female Masters swimmers, no effect has been noted.
- In younger individuals, swimming did not add bone mineral content as effectively as weight-bearing exercise.
AQUAROBIC EFFECT ON BMD, FITNESS & WELL-BEING @ 1 YEAR

77 females, ages 50-70, 1 hour/day, 3 days per week, 12 months

* p<0.05

Bravo, Gauthier et al, Arch PMR, 78, 1375-80, 1997
OSTEOPOROSIS AND AQUATIC THERAPY

• The aquatic environment is a very appropriate place to begin a strengthening and endurance program and to improve balance for persons with osteoporosis and it may increase serum osteocalcin, an osteoblastic protein.

• The pool probably does not provide a major bone-deposition stimulus, or reverse loss of bone mineralization in critical areas including the hip and spine.

• Transitioning to land-based impact activities remains the goal for therapy in osteoporosis.
Aquatic Therapy Utility

- Arthritis, both rheumatoid and osteoarthritis
- Spine Pain
- Post-operative pain
- Parkinsonism
- TBI
- SCI
- Fibromyalgia
- Complex Regional Pain Syndrome
- Post-polio Syndrome
- Neuropathy
- Cerebral Palsy
- Polio and Post-polio Syndrome
- Neuropathy
- Stroke (embolic and hemorrhagic)
- Multiple Sclerosis
- Balance Dysfunction
THE UNIQUE EFFECTS OF IMMERSION

- Usually lowers blood pressure
- Reduces autonomic arousal
- Strengthens respiratory musculature
- Enhances cardiovascular efficiency
- Improves kidney function
- Increases muscle perfusion
- Offloads joints, and probably increases circulation to joints
- And all this with essentially no side effects!
Comprehensive Aquatic Therapy

3rd Edition

Twenty-one chapters in 570 pages covering everything from history and physiology through techniques and applications, program development, staff training, program marketing, and legal aspects with hundreds of updated references

Available through

www.comprehensiveaquatictherapy.com
and Amazon.com